An absorption theorem for minimal AF equivalence relations on Cantor sets

نویسنده

  • Hiroki Matui
چکیده

We prove that a ‘small’ extension of a minimal AF equivalence relation on a Cantor set is orbit equivalent to the AF relation. By a ‘small’ extension we mean an equivalence relation generated by the minimal AF equivalence relation and another AF equivalence relation which is defined on a closed thin subset. The result we obtain is a generalization of the main theorem in [GMPS2].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 7 Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

Se p 20 06 Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

Minimal topological actions do not determine the measurable orbit equivalence class

We construct an amenable action ˆ of a non-amenable group on a discrete space. This action extends to a minimal topological action ẑ of on a Cantor set C . We show that ẑ is non-uniquely ergodic and furthermore there exist ergodic invariant measures 1 and 2 such that . ẑ ; C; 1/ and . ẑ ; C; 2/ are not orbit equivalent measurable equivalence relations. This also provides an instance of the fail...

متن کامل

A ug 2 00 6 Minimal topological actions do not determine the measurable orbit equivalence class

We construct a minimal topological action Φ̃ of a non-amenable group on a Cantor set C, which is non-uniquely ergodic and furthermore there exist ergodic invariant measures μ1 and μ2 such that (Φ̃, C, μ1) and (Φ̃, C, μ2) are not orbit equivalent measurable equivalence relations. AMS Subject Classifications: 37A20

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008